

Power clamp cylinder——JCK Series

Compendium of JCK Series

Application

Airtac

JCK Series——Standard type

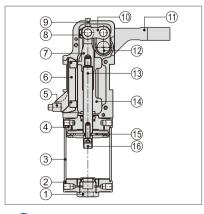
Specification

Model	JCK40	JCK50	JCK63	JCK80
Output torque (0.5MPa)	120N.m	160N.m	380N.m	800N.m
Acting type		Double	acting	
Fluid	Air(to	be filtered by	40µm filter ele	ement)
Operating pressure		0.3~0.8MPa	(43~116psi)	
Proof pressure	1.2MPa(175psi)			
Temperature	-20~70 ℃			
Opening angle	15°/30°/45°/60°/75°/90°/105°/120°/135°			
Minimum opening and closure time	1 second clamping, 1 second opening			
Position sensing	Electrical	l or air Inducti	ve approachii	ng sensor
Cushion type	Air buffer			
Weight (135°) [Note1]	2.2kg 4.0kg 5.5kg 13.0			13.0kg
Port size [Note2]	1/8" 1/4"			

[Note1] This weight includes 15mm offset clamping arm;

[Note2] G thread is available.

JCK □ 63×135 AM1R K G **(1) (2) (3)** (4) **(5) (6)(7)** ①Model ②Clamping arm position 3Bore size 4Opening angle 5Clamping arm [Note2] ⑥Sensor switch[Note3] ⑦Thread type Blank: No clamping arm Blank: horizontal AM1: Offset 15mm_ С Φ6 Φ7 40(circular) AM3: Offset 45mm Blank: No sensor switch 30 Blank: No clamping arm K: With electrical 45 AM1: Offset 15mm sensor switch(PNP) 60 JCK: Power clamp 75 Φ6 Φ9 cylinder G: G Thread 90 KN: With electrical (Double acting) 105 V: Vertical sensor AM3: Offset 45mm 120 switch(NPN) 50(oval) 135 63(oval) 80(oval) [Note1] KA: With air AM2: Offset 15mm R sensor switch Φ8 Ф10.2 AM4: Offset 45mm

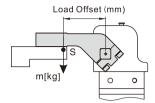

[Note1] Please refer to the right table for details of max. opening angle.

[Note2] Please refer to the drawing for detailed dimensions of clamping arm.

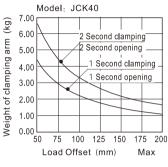
Clamping arm AM1 and AM2 for 80 offset 20mm.

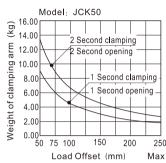
[Note3] K/KA type sensor switch can be ordered separately and please refer to relative contents. KA type sensor switch cann't be ordered separately and 80 size no KA type.

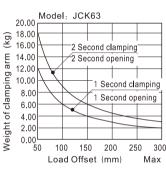
Inner structure and material of major parts

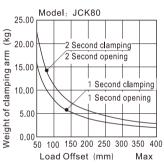

NO.	ltem	Material	
1	Adjusting screw	Free machining steel	
2	Back cover	Aluminum alloy	
3	Aluminum barrel	Aluminum alloy	
4	Front cover	Aluminum alloy	
5	Sensor switch		
6	Sensor switch fix	Plastic	
7	Y knuckle	Alloy steel	
8	Strengthen steel plate	Alloy steel	
9	Retaining pin	Carbon steel	
10	Connecting rod	Alloy steel	
11	Clamping arm	Carbon steel	
12	Pivot	Alloy steel	
13	Piston rod	Carbon steel	
14	End cap	Aluminum alloy	
15	Piston	NBR	
16	Cushion body	Aluminum alloy	

Bore size	Arm position	Arm type	Maximum opening angle
40	horizontal	AM1	135°
	nonzoniai	AM3	105°
	Vertical(V)	AM1	120°
		AM3	105°
50 63 80	horizontal	AM1、AM3 AM2、AM4	135°
	Vertical(V)	AM1、AM3 AM2、AM4	105°

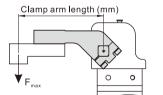

How to select product


Please design appropriate fixture according to "Allowable Arm Load-Load Offset curve" diagram.



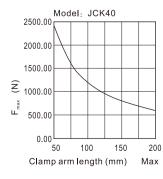

Bore	Maximum load torque				
size	1 second period	2 second period			
40	2.2Nm	3.3Nm			
50	4.5Nm	6.7Nm			
63	6.0Nm	9.0Nm			
80	8.0Nm	11.2Nm			
80	8.0Nm	11.2Nm			

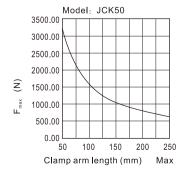
S: distance from pivot point to center of mass of clamping arm m: weight of clamping arm

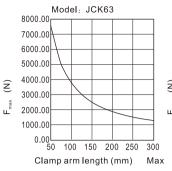


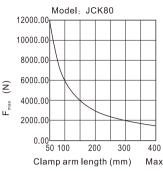
Attention: Please use with speed control valve.

2. Please choose appropriate clamping position according to "Torque-Clamping Arm Length curve" diagram. Note: For clamping force is produced by elbow




Rore size	Maximum holder torque
40	380Nm
- 10	000111111
50	800Nm
63	1500Nm
80	2500Nm

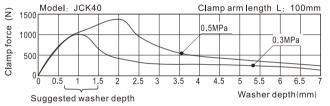

at final clamping arm position.

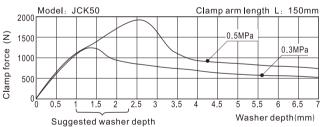

mechanism, maximum torque is only reached

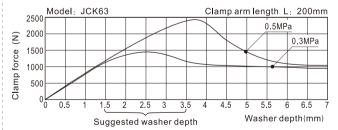
Bore	Maximum clamp torque						
size	0.3MPa	0.4MPa	0.7MPa	0.8MPa			
40	72Nm	95Nm	120Nm	143Nm	167Nm	191Nm	
50	99Nm	132Nm	165Nm	198Nm	230Nm	264Nm	
63	230Nm	307Nm	384Nm	460Nm	537Nm	614Nm	
80	482Nm	643Nm	803Nm	964Nm	1124Nm	1285Nm	

3. Please choose appropriate washer according to "Torque-Spacer thickness curve" diagram.

Note: Inserted washer exceeding maximum clamping torque position may lead to self-lock failure.

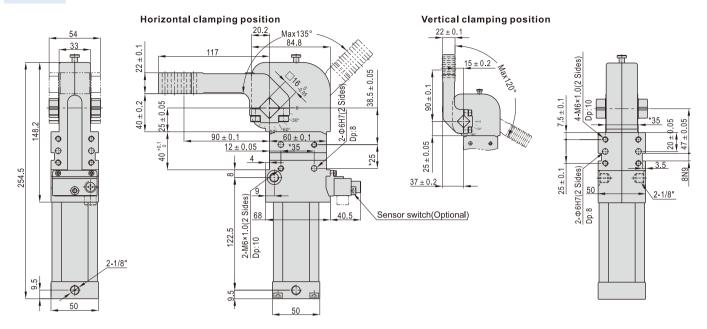

Take safety issue into account when considering thickness of spacer inserted.

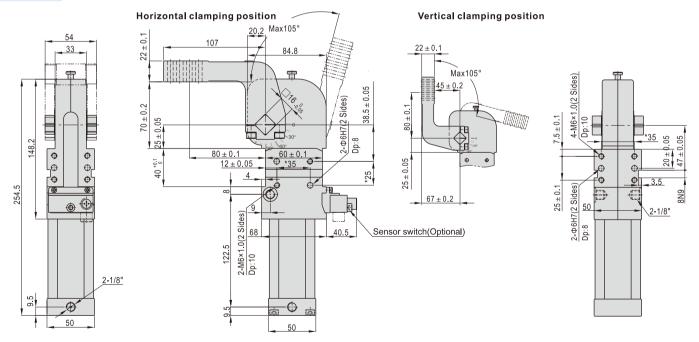

Clamp arm length L(mm) A


Washer

Besides, clamping arm length L represents distance from pivot point to clamping position. For distance from mounting base locating hole to pivot A, please refer to the following table.

Bore size	A(mm)
40	12
50	10
63	10
80	15

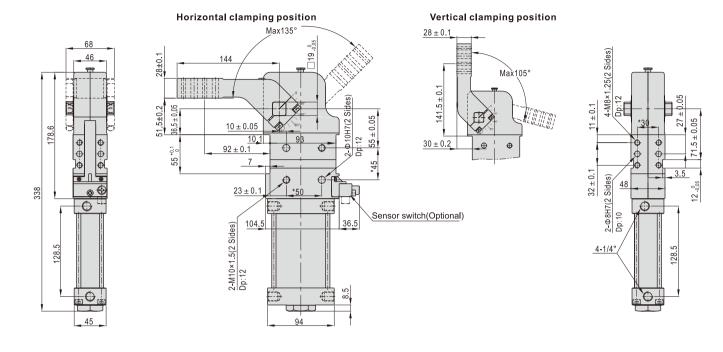



Dimensions

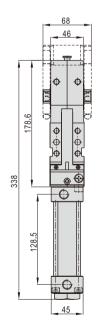
JCK40AM1

With * dimension: pin hole position tolerance: ± 0.02 . Thread hole position tolerance: ± 0.1 .

JCK40AM3

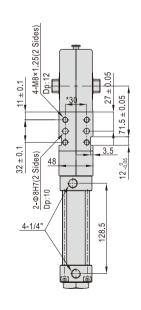


With * dimension: pin hole position tolerance: ±0.02. Thread hole position tolerance: ±0.1.



JCK50AM1(2)

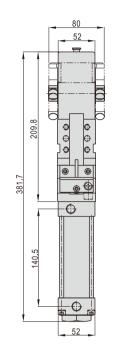
With * dimension: pin hole position tolerance: ±0.02. Thread hole position tolerance: ±0.1.

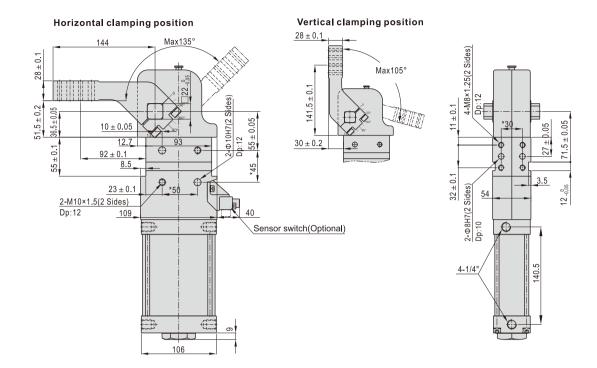

JCK50AM3(4)

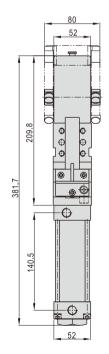
Horizontal clamping position

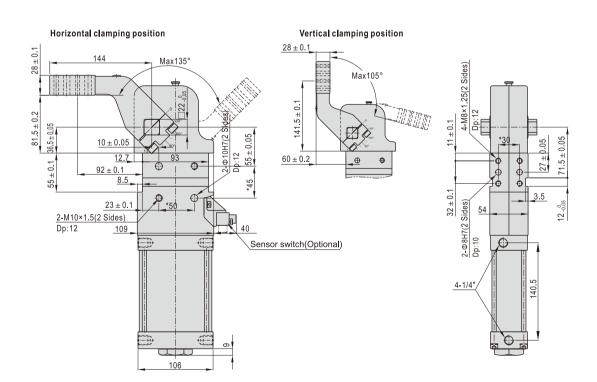
144 10±0.05

Vertical clamping position



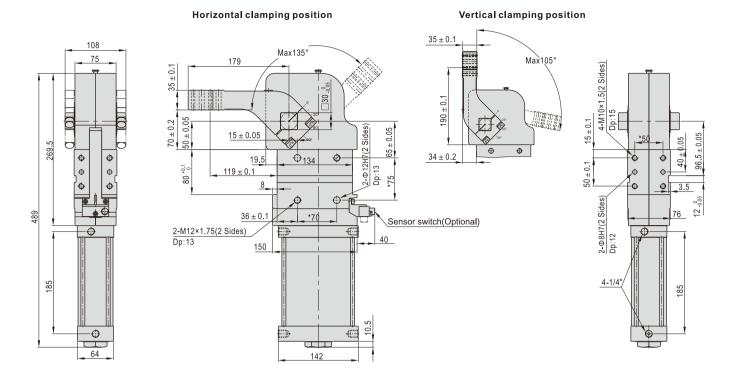

With * dimension: pin hole position tolerance: ±0.02. Thread hole position tolerance: ±0.1.


JCK63AM1(2)

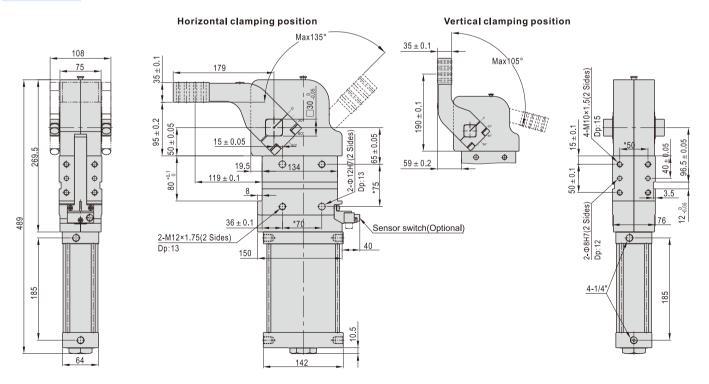


With * dimension: pin hole position tolerance: ±0.02. Thread hole position tolerance: ±0.1.

JCK63AM3(4)



With * dimension: pin hole position tolerance: ± 0.02 . Thread hole position tolerance: ± 0.1 .



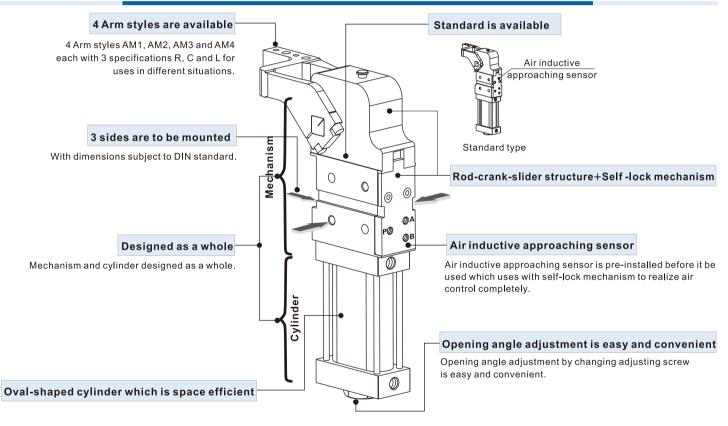
JCK80AM1(2)

With * dimension: pin hole position tolerance: ± 0.02 . Thread hole position tolerance: ± 0.1 .

JCK80AM3(4)

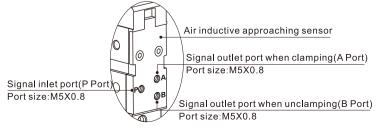
With * dimension: pin hole position tolerance: ±0.02. Thread hole position tolerance: ±0.1.

JCK Series——Air Inductive approaching sensor type


Specification

Model	JCK40□KA	JCK50□KA	JCK63□KA		
Output torque (0.5MPa)	120N.m	160N.m	380N.m		
Acting type		Double acting			
Fluid	Air(to be fil	tered by 40µm filt	er element)		
Operating pressure	0.3	~0.8MPa(43~116	psi)		
Proof pressure	1.2MPa(175psi)				
Temperature	-20~70 °C				
Opening angle	15°/30°/45	°/60°/75°/90°/105	°/120°/135°		
Minimum opening and closure time	1 second	clamping, 1 secor	id opening		
Position sensing	Air Indu	ictive approaching	gsensor		
Cushion type	Air buffer				
Weight (135°) [Note1]	2.2kg 4.0kg 5.5kg				
Port size [Note2]	1/8" 1/4"				

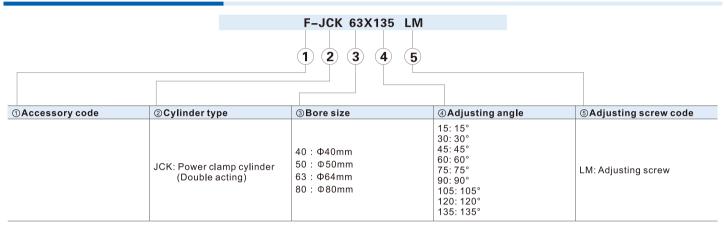
[Note1] This weight includes 15mm offset clamping arm;

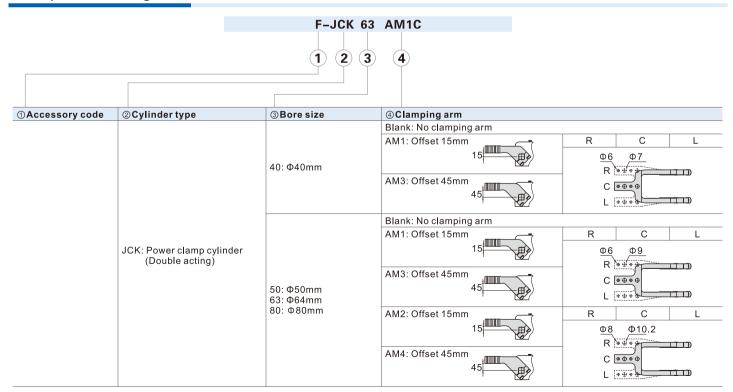

[Note2] G thread is available.

Compendium of JCK(Air inductive approaching sensor type) Series

Installation and application

- 1. Can be mounted from three sides.
- 2. Air inductive approaching sensor is obturated completely which avoid dust and splashed welding slag breaking cylinders.
- 3. Adapt to air control loop's equipment. Main signal export to self-lock mechanism to check clamp or unclamp's position by air pressure signal.
- ${\bf 4.\,Please\,connect\,air\,inductive\,approaching\,sensor's\,ports\,by\,the\,below\,sketch\,map.}$


JCK Series——Clamp arm and Adjusting screw

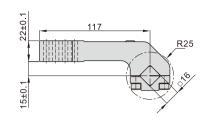

How to select clamp arm and adjusting screw

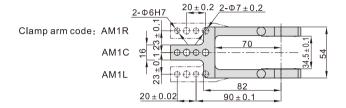
	Accessories\Cylin	der type	JCK40	JCK50	JCK63	JCK80
	F-JCK□□X15LM	F-JCK□□X30LM	•	•	•	•
A -1:	F-JCK _□ X45LM	F-JCK□□X60LM	•	•	•	•
Adjusting	F-JCK _□ X75LM	F-JCK□□X90LM	•	•	•	•
sciew	F-JCK□□X105LM	F-JCK _□ X120LM	•	•	•	•
	F-JCK _□ X135LM		•	•	•	•
	F-JCK□□AM1R	F-JCK□□AM3R	•	•	•	•
	F-JCK□□AM1C	F-JCK□□AM3C	•	•	•	•
Clamp	F-JCK□□AM1L	F-JCK□□AM3L	•	•	•	•
arm	F-JCK□□AM2R	F-JCK□□AM4R		•	•	•
	F-JCKuuAM2C	F-JCK _□ AM4C		•	•	•
	F-JCK _□ AM2L	F-JCK□□AM4L		•	•	•

Adjusting screw ordering code

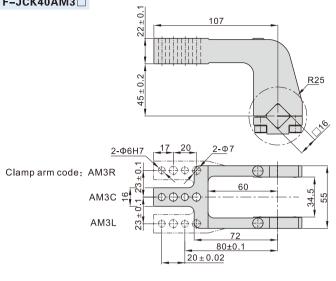
Clamp arm ordering code

Note: Clamping arm AM1 and AM2 for 80 offset 20mm.

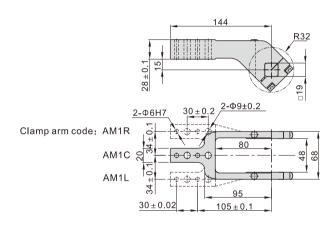

Power clamp cylinder

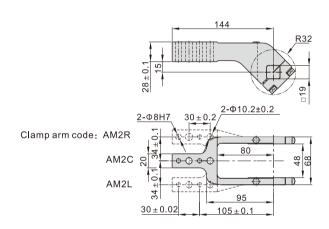


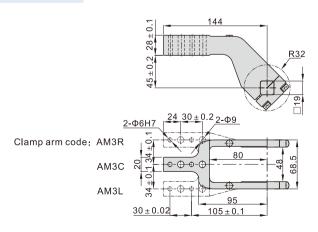
JCK Series——Clamp arm and Adjusting screw

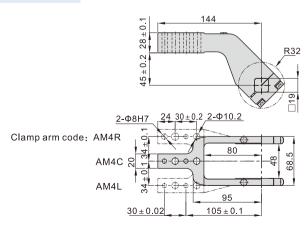

Dimensions of clamp arm

F-JCK40AM1



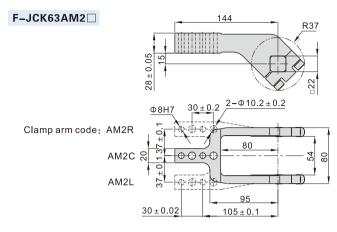

F-JCK40AM3

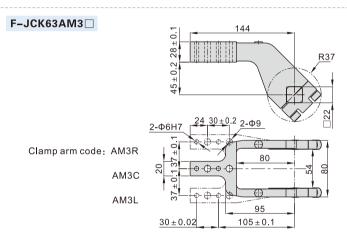

F-JCK50AM1

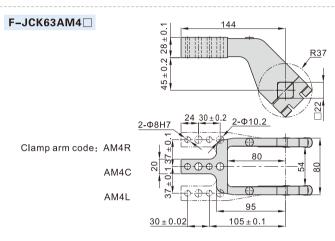

F-JCK50AM2

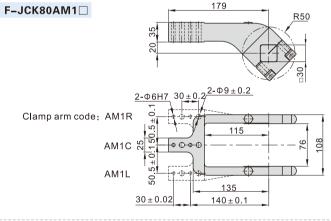
F-JCK50AM3

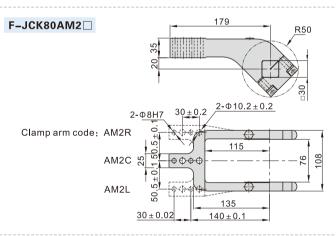
F-JCK50AM4

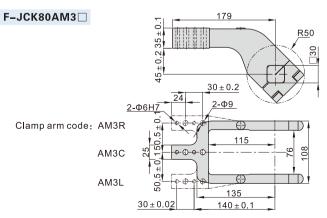


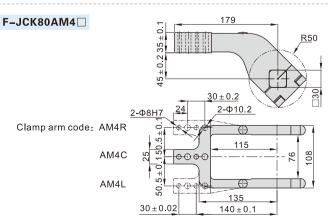


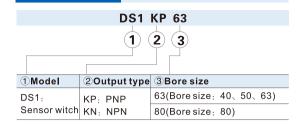


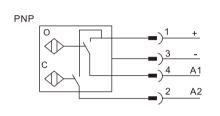

JCK Series——Clamp arm and Adjusting screw

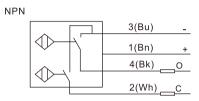

F-JCK63AM1 144 R37 900 #82 Clamp arm code: AM1R AM1C AM1L AM1L Solution in the second content of the s

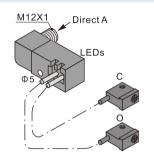


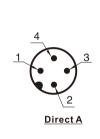



JCK Series——Sensor switch

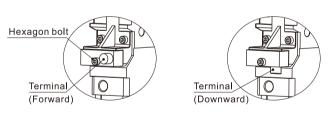

Specification

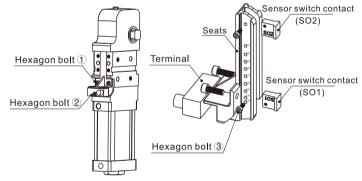

Operating range	2mm
Voltage range	10~30V DC
Output type	N.O., PNP, NPN
Rated DC	150mA(max)
Switch frequency	30Hz
Shell material	PBT
Switch status	Clamping: Red
indication	Opening: Yellow
Voltage indication	Green


Ordering code



Hookup





Installation and application of sensor switch

- 1. Sensor switch is well assembled before leaving factory which is free of adjusting. If you need to change terminals' wiring direction, change new sensor or rearrange angle, please do as follows:
- 1.1) Steps of changing terminals' wiring direction:

1.2) Steps of change new sensor switch:

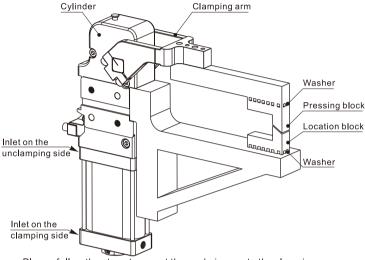
(See figure above.) Unscrew the hexagon bolt \rightarrow dismount sensor's Terminal \rightarrow change terminals' wiring direction as you need \rightarrow remounting \rightarrow screw up the hexagon bolt.

(See figure above.) unscrew two hexagon bolts ①→dismount sensor seats as a whole→unscrew two hexagon bolts ③→dismount two sensor switch contacts(SO1\SO2)→unscrew hexagon bolt ②→remove the sensor switch→choose new sensor switch →replace new sensor switch contact and screw up hexagon bolt ②→replace new wiring box and screw up hexagon bolt ①→finished.

Ecommended lock torque of hexagon bolt is listed in the following table:

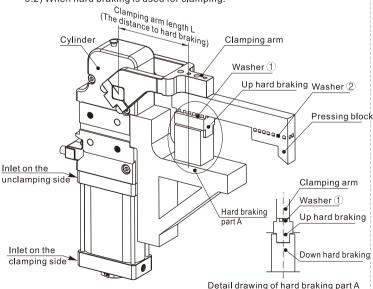
	Ecommended lock torque of hexagon bolt ① Ecommended lock torque of hexagon bolt ② Ecommended lock torque of hexagon bolt							
Bore size	Hexagon bolt type	Lock torque(N.m)	Hexagon bolt type	Lock torque(N.m)	Hexagon bolt type	Lock torque(N.m)		
40、50	M3×0.5	1.2~1.5	M5×0.8	4.0~5.0	M3×0.5	1.2~1.5		
63、80	M5×0.8	4.0~5.0	0.0*0.0	4.0~5.0	IVI3*U.5	1.2~1.5		

1.3) Steps of readjusting angle: For more details, see latter contents.



Power clamp cylinder

JCK Series


Installation and application

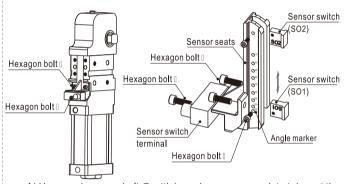
- 1. Mount the cylinder at desired place with bolts and locating pin after choosing a mounting surface. Connect the cylinder and control valve with joint and rubber hose. To adjust the opening and closure speed, our pneumatic power welding clamp is equipped with return stroke air buffering. Buffering cannot function well if the clamping arm is over-weighted so that clamping arm' weight must be within the allowable limit;
- 2. Using clamping arm beyond the listed in this catalog is forbidden.
- 3. Workpiece mounting method:
 - 3.1) When only clamping torque is used for clamping:

Please follow the steps to mount the workpiece onto the clamping arm:

- A) Clamping the arm: supply compressed air through the inlet on the clamping side to keep the arm and pressing block at the closure position simultaneously. Make sure the arm is locked up.
- B) Adjusting the clamping gap: adjust the spacer under the mentioned state to make the pressing block in line with the workpiece's thickness. (At this moment no clamping torque is produced theoretically.)
- C) Applying clamping torque: Insert the spacer furthermore under the mentioned state until the gap is smaller than the workpiece's thickness and desired clamping torque is produced. (Make sure the mechanism passes the dead position to produce self-locking i.e. the retaining pin is pushed out.)
- 3.2) When hard braking is used for clamping:

Please follow the steps to mount the workpiece onto the clamping arm:

 A) clamping the arm: supply compressed air through the inlet on the closure side to keep the arm and the braking block at the clamping position simultaneously. Make sure the arm is locked up;


- B) Adjusting the clamping gap: Adjust washer ① under the mentioned state until the gap between the upside braking block and downside one. (At this moment no clamping torque is produced theoretically.)
- C) Applying clamping torque: insert the washer ① furthermore under the mentioned state to produce desired clamping torque. (Make sure the mechanism passes the dead position to produce self-locking i.e. the retaining pin is pushed out.)
- D) Adjust washer ② under the state mentioned in C to make the pressing block in contact with the workpiece.
- 3.3) When side guide plate is mounted:

 Side guide plate is mounted:

 Side guide plate is mounted on the clamping arm to prevent transverse movement and make sure that no transverse load is applied and that the arm would not be stuck.
- 4. Angle adjusting method:

Standard adjusting angle range of the pneumatic clamp is $15^{\circ} \sim 135^{\circ}$. Opening angle can be changed via changing cylinder's stroke distance or the sensor's position:

4.1) Step 1 of adjusting angle--change of sensor's position:

- A) Unscrew hexagon bolt 0 with inner hexagon wrench to take out the sensor seats;
- B) Unscrew hexagon bolt ③ with inner hexagon wrench to take out sensor SO1 and align it to your desired angle indication positon and re-screw up hexagon bolt ③. (Note: when mounting sensor SO1, the number "SO1" should point downward except 15°.)
- C) After the sensor's position is adjusted, replace the sensor seats by screwing up hexagon bolt ① with inner hexagon wrench (lock-up torque by related contents).
- Note: 1) sensor SO2 controls the cylinder's end stroke position and its mounting position is well set when leaving factory and is not changeable.

 Sensor Switch

 V Knuck
 - changeable.

 2) the sensor wiring box is provided with two outgoing orientations: forward and downward. Unscrew hexagon bolt@ and then you can change the wiring box orientation. After that, screw up hexagon bolt @.

 Sensor Switch
 (SO2)

 Y Knuckle
 (SO2)

 The gap

 - 4.2) Step 2 of adjusting angle—change of the cylinder's stroke distance:

 The relation between the opening angle of clamping arm and cylinder's stroke distance is listed as follows:

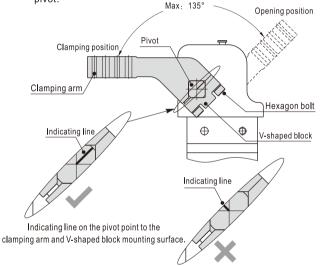
Opening angle\Type	JCK40	JCK50	JCK63	JCK80
15°	20.2	21.6	23.1	36.1
30°	28.1	30.2	33.4	50.5
45°	34.8	37.5	41.6	62.7
60°	41.4	44.6	49.7	74.5
75°	48.0	51.8	57.5	86.3
90°	54.8	59.2	65.7	98.1
105°	61.5	66.4	73.8	109.6
120°	67.4	72.7	81.0	119.5
135°	71.6	77.3	86.2	126.4

Power clamp cylinder

JCK Series

During actual operation, the cylinder's stroke can be changed by changing the adjusting screw at the bottom to control the clamping arm's opening

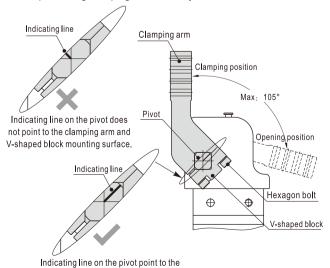
- A) Unscrew original adjusting screw with inner hexagon wrench
- B) Choose suitable adjusting screw according to actual need (the bottom is marked with corresponding opening angle).
- C) Screw up new adjusting screw into the cylinder's end cap.

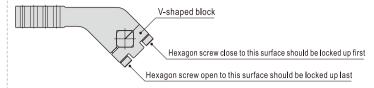

5. Mounting clamping arm:

The clamping arm is already mounted when leaving factory which can be remounted by yourself horizontally or vertically according to your actual need.

5.1) Mounting clamping arm horizontally:

Unscrew 4 hexagon bolts on both sides of the clamping arm to remove V-shaped block and then the clamping arm for substituting your desired one.


When mounting, please note the direction of the indicating line on the pivot.


Indicating line on the pivot does not point to the clamping arm and V-shaped block mounting surface.

5.2) Mounting clamping arm vertically:

clamping arm and V-shaped block mounting surface.

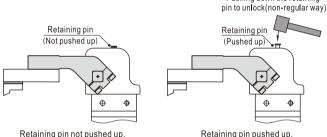
5.3) V-shaped block mounting

5.4) Holding torque of clamping arm (recommended):

When holding clamping arm, please choose recommended value in the following list:

Bore size	Bolt type	Holding torque (N.m)
40	M6×1.0	13.8
50	M6×1.0	13.8
63	M8×1.25	33.0
80	M10×1.5	66.0

6. Self-lock function:


At the end of stroke, the crank-slider mechanism passes the dead point and gets self-locked up. The retaining pin gets pushed up at this moment. Even when compressed air is off, the cylinder can remain at closure state for safety. To open self-locking of the crank-slider mechanism, push down the retaining pin when compressed air is off.

Warning

Pushing down the retaining pin may cause clamping arm to spring off at closure state.

So when ushing the pin, please get yourself away from the clamping arm's operation range.

Pushing down the retaining

Retaining pin not pushed up, crank-slider mechanism not self-locked

Retaining pin pushed up, crank-slider mechanism self-locked

